Instalar o Steam
Iniciar sessão | Idioma
简体中文 (Chinês Simplificado) 繁體中文 (Chinês Tradicional) 日本語 (Japonês) 한국어 (Coreano) ไทย (Tailandês) Български (Búlgaro) Čeština (Checo) Dansk (Dinamarquês) Deutsch (Alemão) English (Inglês) Español-España (Espanhol de Espanha) Español-Latinoamérica (Espanhol da América Latina) Ελληνικά (Grego) Français (Francês) Italiano (Italiano) Bahasa Indonesia (Indonésio) Magyar (Húngaro) Nederlands (Holandês) Norsk (Norueguês) Polski (Polaco) Português (Brasil) Română (Romeno) усский (Russo) Suomi (Finlandês) Svenska (Sueco) Türkçe (Turco) Tiếng Việt (Vietnamita) Українська (Ucraniano) Relatar problema de tradução
_______ I still_______________######____
____****know what u did______######____
_______last summer__________####______
________*************!_____________##________
_____________________________######_____
____________________________#######_____
____####__________________#########___
___######________________###_######___
#########_______________###__######__
_#######_______________###___######___
_______#################____######__
_______##########################__
________################____#####____
_________##___________##_____####______
_________##___________##_____#########___
_______###__________###______#########_
If every male on earth got a boner at the same time, the earth's rotation would slow down. Assume there are about 3.8 billion males, with an average D ick height of about 80 cm off the ground. The average D ick weighs about 100 grams.
That's a combined mass of 380,000,000 kg of C ock
Now we must make an approximation. For simplicity's sake, let us assume the C ocks are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated D ick ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
So in conclusion If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed. Stay hard fellas.