Grizwy
;)
Sa, Yemen
You can't be a big gay only THE big gay. You are the gayest of the gays. It requires years of training to become the Big Gay as you need to be a huge nonce and have at least 300 snapchat streaks that you are dedicated to keeping
You can't be a big gay only THE big gay. You are the gayest of the gays. It requires years of training to become the Big Gay as you need to be a huge nonce and have at least 300 snapchat streaks that you are dedicated to keeping
Sexy prime
In number theory, sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because both are prime and 11 − 5 = 6.

The term "sexy prime" is a pun stemming from the Latin word for six: sex.

If p + 2 or p + 4 (where p is the lower prime) is also prime, then the sexy prime is part of a prime triplet. In August 2014 the Polymath group, seeking the proof of the twin prime conjecture, showed that if the generalized Elliott–Halberstam conjecture is proven, one can show the existence of infinitely many pairs of consecutive primes that differ by at most 6 and as such they are either twin, cousin or sexy primes.[1]

Primorial n# notation
Further information: Primorial § Definition for natural numbers
As used in this article, n# stands for the product 2 · 3 · 5 · 7 · … of all the primes ≤ n.

Types of groupings
Sexy prime pairs
The sexy primes (sequences OEIS: A023201 and OEIS: A046117 in OEIS) below 500 are:

(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173), (173,179), (191,197), (193,199), (223,229), (227,233), (233,239), (251,257), (257,263), (263,269), (271,277), (277,283), (307,313), (311,317), (331,337), (347,353), (353,359), (367,373), (373,379), (383,389), (433,439), (443,449), (457,463), (461,467).
As of April 2022, the largest-known pair of sexy primes was found by S. Batalov and has 51,934 digits. The primes are:

p = 11922002779 x (2172486 - 286243) + 286245 - 5
p+6 = 11922002779 x (2172486 - 286243) + 286245 + 1[2]
Sexy prime triplets
Sexy primes can be extended to larger constellations. Triplets of primes (p, p+6, p+12) such that p+18 is composite are called sexy prime triplets. Those below 1,000 are (OEIS: A046118, OEIS: A046119, OEIS: A046120):

(7,13,19), (17,23,29), (31,37,43), (47,53,59), (67,73,79), (97,103,109), (101,107,113), (151,157,163), (167,173,179), (227,233,239), (257,263,269), (271,277,283), (347,353,359), (367,373,379), (557,563,569), (587,593,599), (607,613,619), (647,653,659), (727,733,739), (941,947,953), (971,977,983).
In January 2005 Ken Davis set a record for the largest-known sexy prime triplet with 5132 digits:

p = (84055657369 · 205881 · 4001# · (205881 · 4001# + 1) + 210) · (205881 · 4001# - 1) / 35 + 1. [3]
In May 2019, Peter Kaiser improved this record to 6,031 digits:

p = 10409207693×220000−1.[4]
Gerd Lamprecht improved the record to 6,116 digits in August 2019:

p = 20730011943×14221#+344231.[5]
Ken Davis further improved the record with a 6,180 digit Brillhart-Lehmer-Selfridge provable triplet in October 2019:

p = (72865897*809857*4801#*(809857*4801#+1)+210)*(809857*4801#-1)/35+1[6]
Norman Luhn & Gerd Lamprecht improved the record to 6,701 digits in October 2019:

p = 22582235875×222224+1.[7]
Serge Batalov improved the record to 15,004 digits in April 2022:

p = 2494779036241x249800+1.[8]
Sexy prime quadruplets
Sexy prime quadruplets (p, p+6, p+12, p+18) can only begin with primes ending in a 1 in their decimal representation (except for the quadruplet with p = 5). The sexy prime quadruplets below 1000 are (OEIS: A023271, OEIS: A046122, OEIS: A046123, OEIS: A046124):

(5,11,17,23), (11,17,23,29), (41,47,53,59), (61,67,73,79), (251,257,263,269), (601,607,613,619), (641,647,653,659).
In November 2005 the largest-known sexy prime quadruplet, found by Jens Kruse Andersen had 1,002 digits:

p = 411784973 · 2347# + 3301.[9]
In September 2010 Ken Davis announced a 1,004 digit quadruplet with p = 23333 + 1582534968299.[10]

In May 2019 Marek Hubal announced a 1,138 digit quadruplet with p = 1567237911 × 2677# + 3301.[11][12]

In June 2019 Peter Kaiser announced a 1,534 digit quadruplet with p = 19299420002127 × 25050 + 17233.[13]

In October 2019 Gerd Lamprecht and Norman Luhn announced a 3,025 digit quadruplet with p = 121152729080 × 7019#/1729 + 1.[14]

Sexy prime quintuplets
In an arithmetic progression of five terms with common difference 6, one of the terms must be divisible by 5, because 5 and 6 are relatively prime. However, all multiples of 5 (except itself) cannot be prime numbers. Thus, the only sexy prime quintuplet is (5,11,17,23,29); no longer sequence of sexy primes is possible, since adding 6 to the last number in the set of sexy prime quintuplets (29) equals 35, which is a composite number.
お気に入りのグループ
"Pursuing Our Passions"
6
人登録
1
人がゲー 中
1
人オンライン
2
人チャット中
スクリーンショットショーケース
I love you jon
1
最近のアクティビティ
総プレイ時間:7時間
ゲー 中です
総プレイ時間:12.4時間
4月29日 に最後にプレイ
総プレイ時間:1,045時間
4月29日 に最後にプレイ
💜Thordiris 1月15日 10時42分 
+rep pro moves
Grozahn 2024年10月19日 10時34分 
game leadership exemplified
76561199444245185 2024年9月9日 21時42分 
         ⢀ ⣤⣶⣶⣶⣶⣶⣤⣄⡀         
       ⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣄⡀     
    ⣴⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣮⣵⣄   
  ⢾⣻⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣿⣿⡀ 
  ⣽⣻ ⣿⡿ ⣉ ⣿⣿⣿⣿⣿⣿⣿⣿⣏⡟ ⡉⢻⣿⡌⣿⣳⡥ 
 ⢜⣳⡟⢸⣿⣷⣄ ⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣤ ⣼⣿⣇⢸⢧⢣ 
  ⢳ ⣸⣿⣿⢿⣿⣿⣿⣿⡿   ⢿⣿⣿⣿⣿⣿⣿⣿⣿ ⡟⢆ 
    ⣾⣿⣿⣼⣿⣿⣿⣿⡀    ⣿⣿⣿⣿⣿⣽⣿⣿    
 ⢀⣀⣼⣷⣭⣛⣯⡝ ⢿⣛⣋⣤⣤⣀⣉⣛⣻⡿⢟⣵⣟⣯⣶⣿⣄⡀ 
⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⣶⣶⣾⣶⣶⣴⣾⣿⣿⣿⣿⣿⣿⢿⣿⣿⣧
⣿⣿⣿ ⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿  ⣿⡿
Sunshine 2024年8月31日 8時46分 
─▄████▄████▄
██▒▒▒▒█▒▒▒▒██(¯`•´¯)
▀██▒▒▒▒▒▒▒██▀.*•❀•*.
─▀██▒▒▒▒▒██▀.•..(¯`•´¯)
───▀██▒██▀(¯`•´¯)*•❀•*
─────▀█▀…•..*•❀•*

♥𝙖𝙙𝙙 𝙢𝙚 𝙥𝙡𝙚𝙖𝙨𝙚♥
76561199559095510 2024年7月20日 3時36分 
add me bro
76561199164554525 2024年4月7日 15時41分 
+rep nice profile😉