Инсталирайте Steam
вход | език
Опростен китайски (简体中文) Традиционен китайски (繁體中文) Японски (日本語) Корейски (한국어) Тайландски (ไทย) Чешки (Čeština) Датски (Dansk) Немски (Deutsch) Английски (English) Испански — Испания (Español — España) Испански — Латинска Америка (Español — Latinoamérica) Гръцки (Ελληνικά) Френски (Français) Италиански (Italiano) Индонезийски (Bahasa Indonesia) Унгарски (Magyar) Холандски (Nederlands) Норвежки (Norsk) Полски (Polski) Португалски (Português) Бразилски португалски (Português — Brasil) умънски (Română) уски ( усский) Финландски (Suomi) Шведски (Svenska) Турски (Türkçe) Виетнамски (Tiếng Việt) Украински (Українська) Докладване на проблем с превода
⣿⣿⣿⣿⣿⣦ ⢀⣤⣄⡀ ⢻⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣇ ⣿⣿⣿ ⢰⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣆ ⢀⣼⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡆ ⢶⣶⣶⣾⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣧ ⡀ ⢿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄⢸⣷⡄ ⣄⡀ ⢿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇ ⣿⣿⣦ ⣿⣷⣶⣦⣼⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣼⣿⣿⣿⣷⣄⣸⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⡿⢛⡙⢻ ⣉⢻⣉⢈⣹⣿⣿ ⣉⢻⡏⢛ ⣉⢻⣿⣿⣿
⣿⣿⣇ ⣾ ⣸⣿ ⣿⣿⣿⡀ ⡇⣾⡄⣿ ⣿⣿⣿
⣿⣿⣟ ⣃⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿
⣿⣿⡿ ⢿⣿⣿⡿ ⣼⣿⣷⣌ ⣿⣿⣿⣿⣿ ⣿⣿⣿⣿
⣿⣿⢰⣿⣶⣌⣥⣶⣿⣿⡟ ⢛⢷⣦⡍ ⡴⣲⡲⡌⢿⣿
⣿⡇⣾⣿⡿⡛⢻⣿⣿⣿⣇ ⣹⣿⡿⢋⣼⣯⣤⣼⡷⢸⣿
⢛⣣⣿⣿⡌ ⡁⢸⢿⣦⣻⣿⣿⣿⣿⣡⣿⣿⣿⣿⣿⡇⣾⣿
⡖⢹⣿⣿⣿⣶⣾⣿⣿⣷⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⢰⣿⣿
⡥⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇⢿⣿⣿
⣷⡈⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿
⣿⣷ ⣿⣿⣿⣿⣿⡟⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡀⣿⣿
⣿⡧⢈⣿⣿⣿⣿⣿⣿⡎⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧ ⣿
⣿⡇⣹⣿⣿⣿⣿⣿⣿⣿⢘⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷
⡟⢰⣿⣿⣿⣿⣦⣍⣉⣥⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆
⢀ ⢷⡜⣧
⢀⣤ ⢧⡀
⢀ ⡴ ⣆
⢸⡇⣶ ⢀⡀ ⢿⡆
⣧ ⡀ ⢸⡇
⡆ ⢀⣶⡀ ⣰ ⣼⡇
⣿ ⣴⡟
⣆ ⣾⣏
⣦⡀ ⣧
⣶ ⡀⢹⡆
h-hi.
If every male on earth got a boner at the same time, the earth's rotation would slow down. Assume there are about 3.8 billion males, with an average D ick height of about 80 cm off the ground. The average D ick weighs about 100 grams.
That's a combined mass of 380,000,000 kg of C ock
Now we must make an approximation. For simplicity's sake, let us assume the C ocks are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated D ick ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
⣿⣿⣿⣿⢀ ⣛⣛⣭⢭⣟⣛⣛⣛ ⢆ ⢿⣿⣿
⣿⣿⢣⢶⣟⣿⣖⣿⣷⣻⣮⡿⣽⣿⣻⣖⣶⣤⣭⡉
⢹ ⣛⣣⣭⣭⣭⣁⡛ ⢽⣿⣿⣿⣿⢻⣿⣿⣿⣽⡧⡄
⣼⣿⣿⣿⣿⣿⣿⣿⣿⣶⣌⡛⢿⣽⢘⣿⣷⣿⡻ ⣛⣀
⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦ ⡅⣿ ⣡⣴⣿⣿⣿⡆
⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷ ⣱⣾⣿⣿⣿⣿⣿⣿
⢀⣿⣿⣿⣿⣿⣿⣿⣿ HAVE A GOOD DAY MAN ⣿
⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣮⣝⣛ ⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟
⡇ ⡀ ⣀⡴⢿⣿⣿⣿⣿⣿⣿⣿⣷⣦⡀
⢄ ⣀⣄⡈ ⣿⣿⣿⣿⣿⣿⣿⣿⣆
⢀⡀ ⣿⣿⣿⣿⣿ ⡿⢿⣆
⢀⡾⣁⣀ ⣗⡀ ⢻⣿⣿ ⢤⣴⣦⣤⣹ ⢀⢴⣶⣆
⢀⣾⣿⣿⣿⣷⣮⣽⣾⣿⣥⣴⣿⣿⡿⢂ ⢚⡿⢿⣿⣦⣴⣾ ⣼⡿
⢀⡞ ⢹⣿⣿⣿⣿⣿⣌⢤⣼⣿⣾⣿⡟
⣾⣷⣶ ⣤⣄⣀⡀ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡇
⢦⡈⢻⣿⣿⣿⣶⣶⣶⣶⣤⣽⡹⣿⣿⣿⣿⡇
⣽⡻⢿⣿⣿⣿⣿⣿⣿⣷⣜⣿⣿⣿⡇
⢸⣿⣿⣷⣶⣮⣭⣽⣿⣿⣿⣿⣿⣿⣿
⣀⣀⣈⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿