Instal Steam
login | bahasa
简体中文 (Tionghoa Sederhana) 繁體中文 (Tionghoa Tradisional) 日本語 (Bahasa Jepang) 한국어 (Bahasa Korea) ไทย (Bahasa Thai) Български (Bahasa Bulgaria) Čeština (Bahasa Ceko) Dansk (Bahasa Denmark) Deutsch (Bahasa Jerman) English (Bahasa Inggris) Español - España (Bahasa Spanyol - Spanyol) Español - Latinoamérica (Bahasa Spanyol - Amerika Latin) Ελληνικά (Bahasa Yunani) Français (Bahasa Prancis) Italiano (Bahasa Italia) Magyar (Bahasa Hungaria) Nederlands (Bahasa Belanda) Norsk (Bahasa Norwegia) Polski (Bahasa Polandia) Português (Portugis - Portugal) Português-Brasil (Bahasa Portugis-Brasil) Română (Bahasa Rumania) усский (Bahasa Rusia) Suomi (Bahasa Finlandia) Svenska (Bahasa Swedia) Türkçe (Bahasa Turki) Tiếng Việt (Bahasa Vietnam) Українська (Bahasa Ukraina) Laporkan kesalahan penerjemahan
________________________#O###___________
_______________________#######__________
_________________________####___________
__________________________##____________
________________________######__________
_______________________#######__________
_____________________#########__________
____________________###_######__________
___________________###__######__________
__________________###___######__________
_______________________######___________
_______________________#####____________
________________________####______(_____
________________________####_______)_____
________________________####_____(##)____
________________________####____(####)___
_______________________#####___(######)__
That's a combined mass of 380,000,000 kg of C ock
Now we must make an approximation. For simplicity's sake, let us assume the C ocks are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated D ick ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.
So in conclusion If we all have a boner at the same time, we will collectively be able to last 0.6752 nanoseconds longer in bed. Stay hard fellas.
●███▄▄▄▄▄▄▄▄
▄▄▅████▅▄▃▂
██████████████►
◥☼▲⊙▲⊙▲⊙▲☼◤